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ABS7RACT

-A method was developed which allows the simulation of

multivariate data sets without requiring a characterization of the 0

distributional shapes of each of the variables. The method is

based upon the concept that most data sets can be approximately -

normalized by a family of power transformations. Conversely, a

matrix of normal deviates produced by a random number generator can ' 2

be adjusted to appropriate means and standard deviations and back-

transformed to simulate the shape of the observed data. The method

was successful in simulating data sets displaying a wide range of

theoretical distributions as well as rea1"data from an ongoing

monitoring program. " tIZ& r 115 .

Kewords: data simulation; multivariate data analysis
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1. INTRODUCTION - 4S

Environmental scientists are increasingly being called upon to

analyze and interpret large multivariate data sets. Sophisticated

statistical computer packages are often employed to test significant

patterns in the data. Unfortunately, most of these commonly

available statistical techniques are based upon assumptions, such as K-

the concent of multivariate normality which are seldom, if ever, met

by data collected from nature. One analytical approach gaining .

popularity over the use of "cookbook" statistics is the utilization " -"

of simulated data sets to test the robustness, power, and sensitivity

of various statistical models in the context of natural spatio-

temporal variability prior to their application. -AL.-A

Data sets can be simulated through the use of packaged computer

programs with random number generation functions (Raeside, 1976; and

Green, 1979). Capra and Elster (1971) have demonstrted a method that

uses a normal distribution random number generator to simulate data

sets with desired means, variances and covariances. Most packaged

computer programs today have random number generating functions based

upon various families of theoretical distributions (e.g. poisson,

binomial, negative binomial, gamma, exponential, etc.). Thus, non-

normal variables can be simulated to have a wide range of

distributions. Unfortunately, each of the observed variables must be

empirically or mathematically evaluated in order to "fit" them with

the most appropriate type of distribution. This selection process

is often quite time-consuming if a large number of variables are to

be simulated, if there is a diversity of distributions among the

variables in the data set, or if a number of different data sets are

Q -- ----



to be simulated.

The major goal of the' presefft study was to develop a simulation

method which could be applied by environmental scientists who may not %

have a strong background in distributional theory and, moreover, who

may not have ready access to a mainframe computer system (e.g. an

investigator working on a ship or at a field station). -The study has F

resulted in the development of a method which simplifies the .

simulation of non-normal multivariate data sets. The method does not

involve a preliminary evaluation and fitting of the distributions of
.?,...-. ?-.:

the variables to be sidiulated, nor does it require random number

generating functions which produce exotic families of non-normal

distributions. As a result, it can be used on most microcomputers, as r w"

well as some of the more powerful programmable calculators. The new ... :.,

simulation method is referred to as the "MDS" method for

!multivariate data simulation." The term "observed data" is used for

the data to be matched with the simulation.

2
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2. METHODS

2.1 General

The development of the MDS method was inspired by a technique

presented by Green (1979). In order to simulate a variable with a

skewed distribution, Green first employed a random number generator

to produce a data set with a standardized normal distribution.

Logarithmically transformed values of the desired mean and standard

deviation were, respectively, added to and multiplied by the

standardized normal deviates. The data set was then untransformed to

produce a new variable with a skewed distribution. The concept of

using a normal random number generator and the

transformation/untransformation process is key to the MDS method.

Box and Cox (1964) introduced a family of power transformations

which were designed to normalize data of wide range of distributions. W; ,

The family of transformations are described by the relationship:

y() - (y"-1)/ , if X$ 0 (1)
2 log y , if Xx 0

where y and y(X) are the raw and transformed variates and X is a

transformation parameter which has been selected to best normalize

the data. Box and Cox (1964) presented a maximized log likelihood , ,

process by which an optimum 1 value can be determined for any given

data set. This process is used in the MDS method to select a series

of transformations which best normalize each of the variables In the

"observed" data set prior to its simulation.

Each variable to be simulated is normalized by the selection

transformation where the mean and standard deviation are calculated

3
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' ~for the transformed data. The mean value is added to each of a set ' .._" w A lY wr-y-X - ..
of normal standard deviates produced by a random number generator,

while the standard deviation value is multiplied by the deviates.

The data are then untransformed to produce a distribution of the same

type exhibited by the original variable. ,

2.2. The MOS Method

The MDS method has been incorporated into a computer package

programmed in APL (Gilman and Rose, 1976) on a DEC System-0.

computer. It can be readily adapted to other languages or computer

systems. The data to be simulated are entered as a rxc matrix, where

r = the number of cases and c = the number of variables. The process

proceeds one variable at a time until the entire data set has been

simulated. The basic steps in the procedure can be described as - ..

follows: ...

1. Transformation of the variable to normalize: In order to

find the appropriate x for the optimum power transformation (1), a

modification of the maximized log likelihood method is employed. The

log likelihood parameter Lmax(x) is defined by: .w. i

Lmax(x) = -1/2 n log (S(X;a)/n), (2) -

where n = the number of replicates, and S(x;l) is the residual sum of

squares of 10). The standardized variate (x) is defined by:

l )-(y' l/X~- (3)

where 5 is the geometric mean of the original variable. The S(X;a)

is calculated by:

S(; (Z().,-())2. (4)

4
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An initial level of X is chosen and the corresponding Lmax value is

calculated. Initial x values of -10 have been shown empirically to

be appropriate for most situations. The A values are then increased

incrementally and the Lmax values are calculated until a maximum

value is found. The current MDS computer program iteratively focuses
on the Lmax value until an optimum x value is defined to two decimal

places.

2. Statistical characterization of normalized observed data

set: Once the optimum 'value for X has been defined, the observed

data is tranformed by (1). The mean (y-()) and standard deviation

(Sy(A)) are calculated for the transformed data set.

3. Creation of data set of normal deviates: A random number

generator is used to create a data set of appropriate size with a

normal standard deviate distribution. ;I, A

4. Adjustment of mean and standard deviation of simulated data:

The yV) value is added to each of the values of the normal data set,

while the Sy(x) value is multiplied by each of the standard deviates.

5. Back transformation of simulated data to the observed dis-

tributions: The new data set is then 'back transformed," employing

the relationship:

y {(X X)+1} 1/X , if t o
y- I OY if O (5)

where X is the data set prior to back transformation and y represents

the data set that simulates the distribution of the observed

variable.

The program continues with cycles of steps 1-5 until all

variables have been simulated. Recently, an option has been included

5
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in the MDS computer program which allows the introduction of the

observed autocorrelation/correlation patterns into the simulated data

set. The multivariate structure is reproduced by using the APL

"indexing" function to sort the values of each of the simulated .-

variables into the same relative numeric order as is exhibited by the

observed date. A second option that is available in the program .._

allows the researcher to introduce "impacts" into the simulated data

by multiplying the final y values by various factors (e.g. the values

are multiplied by 0.5 to decrease them by half or by 2.0 to increase

them by 100% etc.).

2.3 Tests of the MOS Method:

The effectiveness of the MDS method has been tested for a

variety of theoretical distributions. An APL random number .

generating computer package was employed to produce data sets

containing variables with various poisson, binomial, negative
binomial, and gamma distributions. Parameters were varied in each of I. ....

the families of distribution to provide a wide range of

distributional shapes (e.g. from skewed, to normal, to uniform). "

These data sets were used as the "observed" data to be simulated by

the MDS method. Each of the observed data matrices were created to

have 200 cases and up to 9 variables of diverse distributions.

The poisson density is defined by the relationship:

p (X;u) -uX(e-u)/XI (6)

where p(X;u) is the probability of X occurrences and P is the "mean"

parameter defining distributional shape. A data matrix consisting of

a series poisson variables was generated using equation (6) & u

6
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values of 0.25, 0.50, 0.75, 1.0, 1.50, 2.0, 4.0, 5.0 and 10.0 to -

create the observed variables.

The binomial density is defined by the relationship:

p(X;N,P) = N!/{X!(N-X)!}(P)X(Q)N-X (7) ,

where P is the "shape" parameters defining the probability of

success, Q = 1-P, and N is the sample size, set at a constant value

of 10 for these calculations. The values of P used to create the .

observed data matrix were 0.10, 0.25, 0.50, 0.75, and 0.90. AL

The negative binomial density is defined by the relationship: ". "'- .'.

P(X,M,R) = r (M+X) (R)-X/{ X!r(M)(S)M+X} (8)

One interpretation of the relationship X is the number of trials -.

until M failures, where R = (1-P)/P, P being the probability of '

success, S = 1+R, r is the gamma function and Mwas set arbitrarily

at 10. The values of R used were 0.10, 0.25, 0.50, 0.75, and 0.90.

The gamma density is defined by:

F(X) = (e-XX-)/r(Q), (9)

where is the "shape" parameters, which is also equal to the mean

and is the gamma function. The values employed in the generation

of the nine variables in the observed data matrix were 0.25, 0.50,

0.75, 1.0, 1.5, 2.0, 4.0, 5.0, and 10.0.

The poisson, binomial, negative binomial and gamma data sets

were each introduced into the MDS program three times to test the

effectiveness of the simulations for each of the distributional

series. The degree of fit of each of the simulated to observed

variables was tested with a Kolmogorov-Smirnov two sample test

7



(Siegel, 1956). 
-tf.* t

*The MOS method was also subjected to a series of empirical tests VZ,-1

by simulating water quality data from a monitoring program. The

observed data was taken from six bimonthly cruises to a potential .. :;i

dredged material disposal site in the coastal waters off the mouth of

the Chesapeake Bay. Each of the six data sets consisted of 16

variables measured on 18 samples. The simulated data was compared to

the raw data by Kolmogorov-Smirnov two sample tests.

111111114 112.. . . . . . . . . . . . . . . . . . .. . .......... . .. . . . . . . . . . . f
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3. RESULTS

The results of the tests of the MDS simulations of theoretical -

distributions are presented in Table I. None of the comparisons

indicated that the simulations were significantly different from the

'bbserved" data at the a = 0.05 level. Graphical comparisons from

the four families of distributions were made to emphasize the

closeness of fit of the simulations for a wide range of poisson :-4:.-.-"

(Figure 1), binomial (Figure 2), negative binomial (Figure 3) and

gamma (Figure 4) densities. The simulations appeared to fit equally

well for highly skewed data (e.g. Figure la-c; Figure 2a,d; Figure

3a; and Figure 4a,b), to more normal densities (e.g. Figure le;

Figure 2c; Figure 3c; and Figure 4e), to nearly uni- form densities

(e.g. Figures if, 3d, 4c) and various intermediate patterns (e.g.

Figures id, 2b, 3b, 4d). The results of tests of MDS simulations of

field data are presented in Table II. Despite the fact that the

variables displayed a diversity of density patterns, only 3 of the 85

simulations were shown to be significantly different from the

observed data. This number of deviations between the dis-

tributional patterns of the raw data and simulations would be

expected to be due to chance alone.

9
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4. DISCUSSION

The MDS method simulates multivariate data sets containing

variables with a wide variety of distributions. It has been

evaluated not only with the diverse test set of artifically created

distributions, but with numerous data sets collected from nature as

well. The method has consistently proven to be a rapid, effective

simiulation technique.

Techniques for the simulation of multivariate data sets such as

the MDS method provide the environmental scientist with numerous

techniques to aid in the evaluation of sampling/statistical regimes,-.* ..

or in the interpretation of data sets from nature. Green (1979)

reports that numerous investigators have evaluated statistical

methods in the face of violations of assumptions by simulating and

testing data which have the undesirable properties of the data from

nature, but which also have been designed to satisfy either the null

hypothesis (Ho) or alternate (HA) hypothesis models. Thus, the

actual levels of a and B errors can be compared to nominal values and

the effectiveness of the statistical models may be assessed prior to

their use. Green further suggests that in situations where the data

violate the assumptions of the method quite severely, simulation can

be used to test hypotheses directly. A series of data sets can be

simulated to have the desirable properties (i.e. non-normality), but

to also satisfy the HO model. These data sets are then tested by

conventional statistical methods along with the observed data.

Rather than resorting to statistical tables of critical test values

for various levels, probability levels are defined by the

percentage of simulated test statistic values exceeded by the

10
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observed data value(s). In other words, H0 can be rejected at an a = ..,..
e

0.05 if at least 95% of the simulated test statistics are exceeded by

the observed value.

A further use of simulated multivariate data sets is in the

evaluation of the effectiveness of environmental monitoring programs.

Data sets can be simulated to follow baseline distributions but with

various levels of change in the means of the variables (i.e. true HA

models). The simulated data sets can be considered to represent data w" I

taken following an environmental impact. The data sets with increas-

ing levels of simulated "impacts" are sequentially tested with

appropriate statistical methods until the differences are large % .

enough that they can be detected routinely (at the predetermined

level) in the context of the natural spatio-temporal variabi lity.

Thus, "1minimum detectable impacts" can be defined for each parameters

and the effectivenss of the monitoring program can be evaluated in

terms of the ecological changes potentially detectable for the level

of sampling effort. The MDS method of simulation has been

successfully used for each of these techniques.

11
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TABLE I

Kolmogorov-Smirnov Dma values for comparisons of distributions of

"observed" data matrices with simulated data.

Distribution Type Variable Run 1 Run 2 Run 3 i J*

Poisson: 1. u& - 0.25 0.16 0.18 0.17
2. u a0.50 0.06 0.12 0.15W
3. P~ a 0.75 0.10 0.04 0.12 .

4.ua 1.0 0.06 0.07 0.11
5.ua 1.5 0.04 0.05 0.10 ~\

6. u - 2.0 0.11 0.09 0.08
7.Pa 4.0 0.08 0.04 0.04

8. u~ a 5.0 0.11 0.11 0.09
9., VI 10. 0.11 0.06 0.08

Binomial: 1. P = 0.10 0.05 0.07 0.09
2. P a 0.25 0.05 0.08 0.11
3. P a 0.50 0.08 0.09 0.05
4. P a 0.75 0.08 0.09 0.12
5. P - 0.90 0.03 0.11 0.05

Negative Binomial: 1. R a 0.10 0.06 0.03 0.08
2. R a 0.25 0.10 0.07 0.05
3. R a 0.50 0.08 0.08 0.11
4. R a 0.75 0.10 0.06 0.08
5. R a 0.90 0.10 0.07 0.10

Gamma: 1. a a 0.25 0.16 0.14 0.17
2. a a 0.50 0.15 0.13 0.13
3. a a 0.75 0.13 0.08 0.09
4.a a 1.0 0.10 0.07 0.07
5.a - 1.5 0.13 0.10 0.09 .

6. a a*2.0 0.08 0.09 0.13
7.a a 4.0 0.11 0.10 0.10

8. a a 5.0 0.07 0.11 0.10
9. aL M10.0 0.06 0.08 0.04

Notes: Omax (0.05) (for njun2-100) 0.192

Dmax (0.01) (for nl-n 2 -100) *0.231

15
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TABLE II

Kolmogorov-Smirnov Dma values for comparisons of distributions of

empirical water quality data with simulated data. Raw data were .

collected from bl-monthly cruises in the coastal waters off the mouth

of the Chesapeake Bay.

Variable Mar. Apr. Jun. Aug. Oct. Jan. L

Dissolved Oxygen 0.16 0.27 0.22 0.22 0.39 0.22

pH 0.25 0.16 0.33 0.28 0.33 0.27

Turbidity 0.25 0.13 0.11 0.28 0.22 0.20

Nitrite 0.05 0.25 0.22 0.39 -- 0.22

Nitrate -- 0.50* 0.05 -- 0.25

Orthophosphate .-- -- 0.05 -- 0.05

Total Phosphorous 0.08 -- -- 0.11 -- 0.10

1KN 0.20 0.19 0.21 0.16 0.11 0.17

Ammonia 0.33 0.44* 0.11 0.28 0.22 0.34

Suspended Solids 0.16 0.16 0.44* 0.21 0.11 0.15

Volatile Residue 0.16 0.22 0.22 0.16 0.16 0.18

Chlorophyll a 0.08 0.05 0.38 0.16 0.11 0.16

Chlorophyll b 0.25 0.05 0.22 0.16 0.39 0.21

Chlorophyll c 0.16 0.16 0.16 0.11 0.16 0.15

Phaeophytin 0.08 0.11 0.16 0.16 0.05 0.11

Notes: lmax (0.05) (for nl-n2-18) - 0.44

Dmun (0.01) (for nl-n2218) " 0.55

* Significant at = u 0.05 level

-- Most or all samples below detection levels

16
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Figure 1. MDS simulations of representative variables from the ,&

Poisson data set. Downswept crosshatched bars represent the density ..
9 . . . ,* "-"

T

of selected Poisson variables created by a random number generator.

Upswept crosshatched bars represent the mean density patterns of

three simulations and the vertical lines represent the 95% confidence

limits. " -

Figure 2. MDS simulations of representative variables from the

Binomial data set. Downswept crosshatched bars represent the density

of selected Binomial variables created by a random number generator.

Upswept crosshatched bars represent the mean density pattern of three

simulations and the vertical lines represent the 95% confidence

limits.

Figure 3. MDS simulations of representative variables from the

Negative Binomial data set. Downswept crosshatached bars represent

the density of selected Negative Binomial variables created by a

random number generator. Upswept crosshatched bars represent the

mean density pattern of three simulations and the vertical lines

represent the 95% confidence limits.

Figure 4. MDS simulations of representative continuous variables

from the Gamma data set. Closed circles represent the density of

selected Gamma variables created by a random number generator. Open

circles represent the mean density pattern of three simulations and

the vertical lines represent the 95% confidence limits.

17
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